วันเสาร์ที่ 24 มกราคม พ.ศ. 2558

ฟังก์ชันเอกซ์โพเนนเชียล

  จากบทนิยามของฟังก์ชันเอกซ์โพเนนเชียล ฟังก์ชันนี้มีรูปแบบในรูปของเลขยกกำลัง โดยฐานของมันต้องมากกว่า 0 และฐานต้องไม่เป็น 1 อ่านต่อ

ฟังก์ชันค่าสัมบูรณ์

ฟังก์ชันค่าสัมบูรณ์ที่อยู่ในรูป y = l x - a l + c เมื่อ a และ c เป็นจำนวนจริง

ตัวอย่างที่ 1 จงเขียนกราฟและหาโดเมนและเรนจ์ของ f(x) = l x อ่านต่อ

ฟังก์ชันขั้นบันได

  ฟังก์ชันขั้นบันได หมายถึง ฟังก์ชันที่มีโดเมนเป็นสับเซตของจำนวนจริง และมีค่าของฟังก์ชันเป็นค่าคงตัวเป็นช่วงๆ มากกว่าสองช่วง กราฟของฟังก์ชันนี้มีลักษณะคล้ายขั้นบัน  อ่านต่อ

ฟังก์ชันกำลังสอง

ฟังก์ชันกำลังสอง คือ ฟังก์ชันที่อยู่ในรูป y = ax2 + bx + c เมื่อ a, b, c เป็นจำนวนจริงใดๆ และ a ≠ 0 ลักษณะของกราฟของฟังก์ชันขึ้นอยู่กับค่าของ a, b และ c เมื่อ a เป็นจำนวนบวกหรือจำนวนลบ จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ  อ่านต่อ

ความสัมพันธ์ของฟังก์ชัน

ในชีวิตประจำวันเรามักพบ สิ่งที่มีความเกี่ยวข้องกันอยู่เสมอ เช่น สินค้ากับราคาของสินค้า คนไทยทุกคนจะต้องมีเลขประจำตัวประชาชนเป็นของตนเอง ตัวอย่างที่กล่าวมาเป็นตัวอย่างที่แสดงความสัมพันธ์ของสิ่งสองสิ่งที่เกี่ยว ข้องกันภายใต้กฎเกณฑ์อย่างใดอย่างหนึ่ง สำหรับในวิชาคณิตศาสตร์มีสิ่งที่แสดงความสัมพันธ์ดังตัวอย่างต่อไปนี้    อ่านต่อ

สมการกำลังสอง

สมการกำลังสองที่มีรูปทั่วไปเป็น ax2 + bx + c = 0 เมื่อ a , b , c เป็นค่าคงตัว และ a ไม่เท่ากับ 0 ทำได้โดยอาศัยการแยกตัวประกอบ หาจำนวนเต็มสองจำนวนที่คูณกันได้ c และบวกกันได้ b อ่านต่อ

สมบัติของจำนวนจริง

สมบัติของจำนวนจริงเกี่ยวกับการบวกและการคูณ มีดังนี้
1. สมบัติปิด
2. สมบัติการสลับที่
3. สมบัติการเปลี่ยนกลุ่ม
4. สมบัติการมีเอกลักษณ์
5. สมบัติการมีอินเวอร์ส
6. สมบัติการแจกแจง


จำนวนจริง

มนุษย์รู้จักการใช้จำนวน มาตั้งแต่สมัยดึกดำบรรพ์โดยใช้ก้อนหินหรือใช้รอยบากบนต้นไม้แสดงจำนวนสัตว์ เลี้ยง กล่าวได้ว่าจำนวนชนิดแรกที่มนุษย์รู้จักคือจำนวนนับ ต่อมา ภายหลังเมื่อโลกมีการพัฒนามากขึ้น มนุษย์จึงพัฒนาจำนวนชนิดอื่นๆ ขึ้นมาเพื่อให้สามารถแทนปริมาณต่างๆ เช่น น้ำหนัก อุณหภูมิ จำนวนประชากร ความยาวของเส้นรอบวงของโลก ฯลฯ จำนวนซึ่งสามารถแทนสิ่งเหล่านี้ได้ เรียกว่า จำนวนจริง เซตของจำนวนจริงประกอบด้วย

การให้เหตุผลแบบนิรนัย

การให้เหตุผลแบบนิรนัยเป็นการนำความรู้พื้นฐานซึ่งอาจเป็นความเชื่อ ข้อตกลง กฎ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อน และยอมรับว่าเป็นความจริงเพื่อหาเหตุผลนำไปสู่ข้อสรุป เป็นการอ้างเหตุผลที่มีข้อสรุปตามเนื้อหาสาระที่อยู่ภายในขอบเขตของข้ออ้างที่กำหนด
               ตัวอย่างที่ 1      เหตุ   1.สัตว์เลี้ยงทุกตัวเป็นสัตว์ไม่ดุร้าย
                                                     2. แมวทุกตัวเป็นสัตว์เลี้ยง
                                            ผล     แมวทุกตัวเป็นสัตว์ไม่ดุร้าย
    

 

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย (Inductive Reasoning)
           การให้เหตุผลแบบอุปนัย เป็นวิธีการสรุปผลมาจากการค้นหาความจริงจากการสังเกตหรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป
           การหาข้อสรุปหรือความจริงโดยใช้วิธีการให้เหตุผลแบบอุปนัยนั้น  ไม่จำเป็นต้องถูกต้องทุกครั้ง  เนื่องจากการให้เหตุผลแบบอุปนัยเป็นการสรุปผลเกิดจากหลักฐานข้อเท็จจริงที่มีอยู่  ดังนั้นข้อสรุปจะเชื่อถือได้มากน้อยเพียงใดนั้นขึ้นอยู่กับลักษณะของข้อมูล  หลักฐานและข้อเท็จจริงที่นำมาอ้างซึ่งได้แก่
     1. จำนวนข้อมูล หลักฐานหรือข้อเท็จจริงที่นำมาเป็นข้อสังเกตหรือข้ออ้างมีมากพอกับการสรุปความหรือไม่ เช่น  ถ้าไปทานส้มตำที่ร้านอาหารแห่งหนึ่งแล้วท้องเสีย แล้วสรุปว่า ส้มตำนั้นทำให้ท้องเสีย การสรุปเหตุการณ์นั้นอาจเกิดขึ้นเพียงครั้งเดียว ย่อมเชื่อถือได้น้อยกว่าการที่ไปรับประทานส้มตำบ่อยๆแล้วท้องเสียเกือบทุกครั้ง

     2. ข้อมูล หลักฐานหรือข้อเท็จจริง เป็นตัวแทนที่ดีในการให้ข้อสรุปหรือไม่ เช่น ถ้าอยากรู้ว่าคนไทยชอบกินข้าวเจ้าหรือข้าวเหนียวมากกว่ากัน   ถ้าถามจากคนที่อาศัยอยู่ในภาคเหนือหรือภาค-อีสาน คำตอบที่ตอบว่าชอบกินข้าวเหนียวอาจจะมีมากกว่าชอบกินข้าวจ้าว แต่ถ้าถามคนที่อาศัยอยู่ในภาคกลางหรือภาคใต้ คำตอบอาจจะเป็นในลักษณะตรงกันข้าม  อ่านต่อ

ยูเนียน

ยูเนียน (Union)
ยูเนียน (Union) มีนิยามว่า เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A B
ตัวอย่างเช่น
A ={1,2,3}
B= {3,4,5}
A B = {1,2,3,4,5}

เราสามารถเขียนการยูเนี่ยนลงในแผนภาพได้ดังนี้  อ่านต่อ
union

เอกภพสัมพัทธ์

เอกภพสัมพัทธ์ คือ เซตที่ประกอบด้วยสมาชิกทั้งหมดของสิ่งที่เราต้องการจะศึกษา สามารถเขียนแทนได้ด้วยสัญลักษณ์ u
           เอกภพสัมพัทธ์ (Relative Universe) ในการพูดถึงเรื่องใดก็ตามในแง่ของเซต  เรามักมีขอบข่ายในการพิจารณาสมาชิกของเซตที่จะกล่าวถึง  โดยมีข้อตกลงว่าเราจะไม่กล่าวถึงสิ่งใดนอกเหนือไปจากสมาชิก ของเซตที่กำหนดขึ้น เช่น ถ้าเรากำหนดเซตของสมาชิกทุกคนในครอบครัวของผู้เรียนเองให้เป็นเซตใหญ่ที่สุด  เราจะเรียกเซตนี้ว่า เอกภพสัมพัทธ์   เขียนแทนด้วยสัญลักษณ์  U โดยมีข้อตกลงว่า เมื่อกล่าวถึงสมาชิกของเซตใด ๆ จะไม่กล่าวถึงสิ่งอื่นที่นอกเหนือจากสมาชิกในเอกภพสัมพัทธ์
กำหนดให้  U คือ  เซตของจำนวนจริง และ                                                    

            จะได้      A = {-2,2} อ่านต่อ

เซต

เซต
ใช้แทนกลุ่มของคน,สัตว์,สิ่งของ หรือสิ่งที่เราสนใจ เราใช้เครื่องหมายปีกกา“{ } ”
แสดงความเป็นเซต และสิ่งที่อยู่ภายในปีกกา  เราเรียกสมาชิกของเซต
เซตที่เท่ากัน
เซต 2 เซตจะเท่ากันก็ต่อเมื่อจำนวนสมาชิกและสมาชิกของทั้ง 2 เซต เหมือนกันทุกตัว
เช่น A={1,2,3}          B={1,2,3}     จะได้ A=B
เซตที่เทียบเท่ากัน
เซต 2 เซตจะเทียบเท่ากันก็ต่อเมื่อ จำนวนสมาชิกของทั้ง 2 เซต เท่ากัน
เช่น  A={a,b,c}   ,     B={1,2,3}

จำนวนสมาชิกของ A= จำนวนสมาชิกของ B= 3 ตัว อ่านต่อ